The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 32 (2017), No. 6     21. Nov. 2017
Int J Oral Maxillofac Implants 31 (2016), No. 1  (22.01.2016)

Page 223-231, doi:10.11607/jomi.4247, PubMed:26800182


Physical Profile and Impact of a Calcium-Incorporated Implant Surface on Preosteoblastic Cell Morphologic and Differentiation Parameters: A Comparative Analysis
Lollobrigida, Marco / Lamazza, Luca / Capuano, Cristina / Formisano, Giuseppe / Serra, Emanuele / Laurito, Domenica / Romanelli, Maddalena / Molinari, Agnese / Biase, Alberto De
Purpose: To assess and compare topographic features and preosteoblastic cell responses of a new hydrothermally treated, calcium-incorporated surface against other commercially available implant surfaces.
Materials and Methods: Four different surfaces were the subject of comparison in this study: machined (MC), resorbable blast media (RBM), sandblasted/large-grit/acid-etched (SLA), and calciumincorporated SLA (Ca-SLA). Surface morphology and roughness were first characterized by scanning electron microscope (SEM) and white light interferometer, respectively. Preosteoblastic MC3T3-E1 cells were then cultured on the titanium surfaces. Cell morphology was observed at 24 hours, 48 hours, 7 days, and 15 days by SEM; differentiation was assessed at 7, 11, and 15 days by assaying alkaline phosphatase (ALP) activity and osteocalcin (OCN) levels.
Results: Surface characterization revealed nanotopographic features on Ca-SLA. At topographic analysis, SLA and Ca-SLA showed similar roughness values. Significant differences in cell differentiation parameters were found only at 15 days between the SLA surfaces (both Ca-incorporated and nonincorporated) and MC.
Conclusion: Collectively, this study demonstrated that hydrothermal treatment determines the formation of nanotopography without altering the SLA microtopography. Moreover, Ca-SLA and SLA induce MC3T3-E1 cell differentiation at comparable levels.

Keywords: calcium ions, implant, implant surfaces, surface roughness, surface treatment
fulltext (no access granted) order article as PDF-file (20.00 €)