We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Int J Oral Maxillofac Implants 27 (2012), No. 3     15. June 2012
Int J Oral Maxillofac Implants 27 (2012), No. 3  (15.06.2012)

Online Article, Page 586, PubMed:22616069

Online Article: Stress Distribution on Scalloped Implants with Different Microthread and Connection Configurations Using Three-Dimensional Finite Element Analysis
Choi, Kyung-soo / Park, Seong-hun / Lee, Jae-hoon / Jeon, Young-chan / Yun, Mi-jung / Jeong, Chang-mo
Purpose: The objective of this study was to investigate the effects of different microthread designs and implant-abutment connection configurations of scalloped implants on stress distribution in bone using three-dimensional finite element analysis.
Materials and Methods: Three different designs of scalloped implants (two different microthread designs and one without microthreads) with two different connection systems and two flat-top implants with similar connection systems were compared in a bone model that mimicked the anterior maxilla. Vertical and oblique (30-degree) loading with 100 N of force was applied to eight models. Peak stress levels and the distribution of stress were observed.
Results: The stress pattern of scalloped implants was distinctively different from that observed on flat-top implants. Scalloped implants showed peak stresses in the proximal cortical bone as well as in the buccal and palatal cortical bone, whereas flat-top implants showed peak stresses mainly in the buccal and palatal cortical bone and limited stress in the proximal bone. The scalloped implant without microthreads and a conical platform-switched connection demonstrated the lowest peak stress levels. The scalloped implant with a straight platform connection generally showed peak stress that was two to three times higher than that seen in the conical platform-switched model.
Conclusions: Peak stress levels in scalloped implants varied with microthread designs, connection configurations, and the direction of loading. The conical platform-switched connection seemed more important for a scalloped implant than the microthread design in reducing loading stresses exerted on the surrounding bone. Scalloped implants without microthread and a with a conical platform-switched connection or closed microthreads and a conical platform-switched connection showed consistently lower buccal bone stress than the flat-top implants in areas where the bone had a sloping and scalloping shape.