We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Dear readers,

our online journals are moving. The new (and old) issues of all journals can be found at
In most cases you can log in there directly with your e-mail address and your current password. Otherwise we ask you to register again. Thank you very much.

Your Quintessence Publishing House
Int J Oral Maxillofac Implants 34 (2019), No. 1     21. Mar. 2019
Int J Oral Maxillofac Implants 34 (2019), No. 1  (21.03.2019)

Page 133-140a, doi:10.11607/jomi.6729, PubMed:30282092

The Implant Surface and Its Role in Affecting the Dynamic Processes of Bone Remodeling by Means of Distance Osteogenesis: A Comparative In Vivo Study
Thiem, Daniel G. E. / Adam, Martin / Ganz, Cornelia / Gerber, Thomas / Kämmerer, Peer W.
Purpose: This study aimed to evaluate whether different surface modifications affect the dynamics of bone remodeling at the implant and the adjacent local bone.
Materials and Methods: Seventy-two dental implants with different surfaces (smooth and rough control [smCtrl; rCtrl], smooth and rough + O2-plasma spray [smPlas; rPlas], smooth and rough + nanocrystalline SiO2-hydroxyapatite coating [ncSiO2HA] + O2-plasma spray [smNB-C; rNB-C]; each n = 12) were bilaterally inserted into the femora of 36 New Zealand white rabbits. Intravital fluorochrome labeling was performed to visualize the dynamics of bone formation. The objectives were quantification of bone-to-implant contact (BIC [%]) at 2 and 4 weeks and the dynamic bone formation (dbf [%]) at the implants' adjacent local bone within 1, 2, and 3 weeks.
Results: After 2 weeks, BIC was significantly higher for both smNB-C (BIC: 59% ± 2% SEM) and rNB-C (BIC: 66% ± 3% SEM) compared with controls (BIC: 42% ± 1% SEM; P < .005). After 4 weeks, BIC for rNB-C (65% ± 2%) was superior to all test groups (BIC: 39% ± 2% SEM; P = .012). Regarding dbf (%), neither within 1 (P = .88), 2 (P = .48), nor after 3 weeks (P = .36) did any differences occur among the groups, even in accordance to the implant level.
Conclusion: Although distance osteogenesis seems crucial for the development of secondary stability, and thus, of osseointegration, it apparently is not affected by a bioactive ncSiO2HA surface coating. Changing the surfaces' release kinetics and composition may increase distance osteogenesis.

Keywords: adjacent bone formation, distance osteogenesis, intravital labeling, ncSiO2HA-coating, secondary stability, surface modification
fulltext (no access granted) Endnote-Export