We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Dear readers,

our online journals are moving. The new (and old) issues of all journals can be found at
In most cases you can log in there directly with your e-mail address and your current password. Otherwise we ask you to register again. Thank you very much.

Your Quintessence Publishing House
Int J Oral Maxillofac Implants 34 (2019), No. 1     21. Mar. 2019
Int J Oral Maxillofac Implants 34 (2019), No. 1  (21.03.2019)

Page 205-213, doi:10.11607/jomi.6966, PubMed:30521660

Accuracy of a Dynamic Dental Implant Navigation System in a Private Practice
Stefanelli, Luigi V. / DeGroot, Bradley S. / Lipton, David I. / Mandelaris, George A.
Purpose: To evaluate the in vivo accuracy of dental implants placed using a dynamic computer-aided dental implant (CAI) navigation system. The impact of various factors on accuracy was also analyzed.
Materials and Methods: A retrospective in vivo study was performed during the period of October 2015 to December 2017. Data were obtained on all implants placed during this time frame. A chart review was conducted to identify the type of flap, number of implants placed, number of patients treated, and factors related to the description of edentulism (partial or complete). To evaluate accuracy outcomes, the preoperative cone beam computed tomography (CBCT) plan was volumetrically registered to a post-implant placement CBCT scan. Deviations between the planned and placed implant positions were analyzed. Data were statistically analyzed for factors that may affect the accuracy during usage.
Results: Data were obtained on 231 implants placed in healed ridges using a flapless or minimal flap approach under dynamic guidance by a single surgeon. In the 89 arches operated on, 28 (125 implants) were fully edentulous. For all implants, the mean (SD) discrepancies were: 0.71 (0.40) mm for entry point (lateral) and 1.00 (0.49) mm at the apex (3D). The mean angle discrepancy was 2.26 degrees (1.62 degrees) from actual vs planned implant positions. The accuracy measurements for partially edentulous patients using a thermoplastic stent attachment and for fully edentulous patients using a mini-implant-based attachment were nearly identical. No significant accuracy differences were found between implant positions within the different sextants. Guided insertion of the implant itself reduced angular and apex location deviations. The accuracy of implant placement improved during the study period, with the mean entry point and apex deviation as well as overall angle discrepancy measured for the last 50 implants being better (0.59 mm, 0.85 mm, and 1.98 degrees, respectively) compared with the first 50 implants (0.94 mm, 1.19 mm, and 3.48 degrees, respectively).
Conclusion: Dynamic surgical navigation is an accurate method for executing CBCT-based computer-aided implant surgery. In addition, an increased experience level of the surgeon with dynamic navigation appears to improve accuracy outcomes.

Keywords: computer-aided implantology, dental implant placement accuracy, dental navigation, dynamic guided implantology, dynamic navigation, static guided implantology
fulltext (no access granted) Endnote-Export