We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 34 (2019), No. 2     22. Mar. 2019
Int J Oral Maxillofac Implants 34 (2019), No. 2  (22.03.2019)

Page 337-342, doi:10.11607/jomi.7009, PubMed:30883616


Zirconium Oxide Three-Unit Fixed Partial Denture Frameworks Supported by Dental Implants in Acceptable and Reduced Interocclusal Space Possibilities: Pilot In Vitro Fracture Strength and Fractographic Analyses
Gehrke, Sérgio Alexandre / Bonachela, Wellington Cardoso / Lopes Moreno, Jéssica Monique / Orlato Rossetti, Paulo Henrique / Cortellari, Guillermo Castro / Dedavid, Berenice Alina / Calvo-Guirado, José Luis
Purpose: This study investigated the effect of fracture strength and fracture mode characteristics related to reduced interocclusal space on computer-aided design/computer-aided manufacturing (CAD/CAM). ZrO2 fixed partial denture (FPD) frameworks subjected to quasi-static loads.
Materials and Methods: First, two dental implants (4 × 10 mm) were positioned simulating a three-unit FPD (second premolar and second molar abutments). The implants were distributed into two groups: control group (n = 10), positioned at the same level; and the test group (n = 10), where the interocclusal space corresponding to the second molar was reduced by 3 mm in relation to the second premolar to simulate a clinical situation. After FPD wax-up (25-mm long; connector height = 5 mm; connector width = 3 mm, proximal and lingual collar reinforcement), casting was made in a Co-Cr alloy to serve as a prototype. Upon scanning, screw-retained CAD/CAM ZrO2 FPDs were fabricated for each group. Then, FPDs were subjected to quasi-static axial loading until fracture in the mid-occlusal pontic area using a universal testing machine at the crosshead speed of 0.5 mm/min. Next, the samples were analyzed by scanning electronic microscopy (SEM) to describe the fracture characteristics.
Results: The mean fracture strength values for the control group (1,747.4 ± 122.3 N) and test group (1,817.7 ± 158.9 N) showed no significant difference (Student t test, P < .124). The SEM images of the fracture sites revealed two cleavage areas in the test group, providing representative sites with increased fracture energy storage in this group compared with the control group.
Conclusion: Within the limitations of this study, the results showed that reduced interocclusal space and reduced length did not decrease the fracture strength of the ZrO2 FPD frameworks.

Keywords: CAD/CAM, dental implants, fracture strength, interocclusal space, zirconium oxide fixed partial dentures