We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 34 (2019), No. 6     21. Nov. 2019
Int J Oral Maxillofac Implants 34 (2019), No. 6  (21.11.2019)

Page 1299-1305, doi:10.11607/jomi.7410, PubMed:31711072


Titanium Implant Characteristics After Implantoplasty: An In Vitro Study on Two Different Kinds of Instrumentation
Sahrmann, Philipp / Luso, Sandra / Mueller, Constanze / Ender, Andreas / Attin, Thomas / Stawarczyk, Bogna / Schmidlin, Patrick R.
Purpose: To assess surface characteristics and implant stability after implantoplasty performed by two different instrument sequences regarding material loss, surface roughness, and fracture load resistance. Additionally, operators' subjective experience during instrumentation and the damage to neighboring teeth were evaluated.
Materials and Methods: Titanium implants were placed in the position of both first maxillary molars in models exposing 6 mm of their surface. Implantoplasty was performed in phantom heads: Exposed surfaces were instrumented with diamonds and Arkansas stones or abrasive stones and silicone polishers. Operators reported on abrasion, gloss, effectiveness, and tactility using a visual analog scale (VAS). Residual wall thickness of implants was measured on radiographs, material abrasion using three-dimensional (3D) scans, and surface roughness by contact profilometry. Maximum bending moments were measured.
Results: Residual thickness and weight loss were comparable after both treatments (0.3 ± 0.1 and 0.25 ± 0.07 mm and 0.22 ± 0.01 g, and 0.03 ± 0.01 mm and 0.02 ± 0.01 g, respectively, P > .05). Mean surface roughness was lower (P = .0001) for the group with the silicone polishers (0.4 ± 0.2 μm) compared with the group employing diamonds (0.8 ± 0.1 μm). Maximum bending moments showed neither intergroup differences nor stability loss compared with untreated implants. The stone-and-silicone polisher group showed less abrasion (4.6 ± 2.2) and higher gloss values (8.1 ± 1.4) than the diamond-and-Arkansas group (3.1 ± 1.3 and 4.1 ± 2.1, respectively). Superficial tooth injuries at proximal neighbor teeth were common (73% and 80%).
Conclusion: Implantoplasty did not weaken implant stability. The use of silicone polishers revealed lower surface roughness. Regarding surface smoothness, the instrumentation sequence employing silicon carbide and Arkansas stones followed by silicone polishers seems to be superior to the combination of diamond and Arkansas stones.

Keywords: dental implants, fracture, implantoplasty, peri-implantitis, resective surgery, surface roughness