We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 23 (2008), No. 6     15. Nov. 2008
Int J Oral Maxillofac Implants 23 (2008), No. 6  (15.11.2008)

Page 1020-1028, PubMed:19216270


Effect of H2O2/HCl Heat Treatment of Implants on In Vivo Peri-implant Bone Formation
Yang, Guo-li / He, Fu-ming / Zhao, Shan-shan / Wang, Xiao-xiang / Zhao, Shi-fang
Purpose: To investigate the effect of H2O2/HCl heat treatment on peri-implant bone formation in vivo.
Materials and Methods: Twenty Ti-6Al-4V implants and 30 Ti-6Al-4V discs were used in this study. The implants and discs were separated into 2 groups: sandblasted and dual acid-etched group (control group) and sandblasted, dual acid-etched and H2O2/HCl heat-treated group (test group). Surface morphology, roughness, and crystal structure of the discs were analyzed by field-emission scanning electron microscopy, atomic force microscopy, and low angle X-ray diffractometry. The implants were inserted into the femurs of 10 adult white rabbits. Animals were injected with fluorescent bone labels at 1, 5, and 7 weeks following surgery to monitor progress of bone formation. Animals were euthanized 8 weeks postsurgery, and block biopsies were prepared for histologic and histometric analysis.
Results: Microscopic evaluation showed the surfaces were quite irregular for both techniques; however, the test surface demonstrated consistently smaller surface irregularities. The differences in Sa values were significant (P = .022). No significant differences were found in the maximum peak-to-valley ratio values (P = .258). X-ray diffractometry analysis showed that titanium dioxide was found on the test surface. New bone was formed on both implant surfaces. The bone-implant contact pattern appeared to produce a broad-based direct contact. Test implants demonstrated 7.13% more bone to implant contact (P = .003) and 15.42% more bone to implant contact for 3 consecutive threads (P = .001) than control implants. Test implants demonstrated 37.04% more bone area 500 µm outside of implant threads (P = .004) and 51.97% more bone area within 3 consecutive threads (P = .001) than control implants. No significant differences were found in bone area within all implant threads between the two groups (P = .069).
Conclusion: This study demonstrated that implants heat-treated with H2O2/HCl solution enhanced peri-implant bone formation.

Keywords: H2O2/HCl heat treatment, osseointegration, surface morphology, surface roughness, titanium dioxide