We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Int J Oral Maxillofac Implants 23 (2008), No. 4     15. July 2008
Int J Oral Maxillofac Implants 23 (2008), No. 4  (15.07.2008)

Page 648-652, PubMed:18807560

Strain Development in 3-unit Implant-Supported CAD/CAM Restorations
Karl, Matthias / Wichmann, Manfred G. / Heckmann, Siegfried M. / Krafft, Tim
Purpose: Passive fit is difficult to achieve in implant-supported restorations with existing superstructure fabrication techniques. The aim of the study presented was to investigate whether computer-generated fixed partial dentures (FPDs) based on optical impressions lead to less strain development than conventionally fabricated FPDs.
Materials and Methods: A measurement model with 2 implants was set up and strain gauges were attached to the model material mesially and distally adjacent to the implants. Two groups of conventional cementable restorations based on repositioning and pick-up impressions, respectively, and 1 group of CAD/CAM-generated FPDs based on optical impressions were fabricated (n = 10). Strain development during FPD fixation was recorded. In order to compare the different FPD groups with one another, a multivariate analysis of variance (MANOVA) was performed at a level of significance of a = .05.
Results: The mean strain development at the different strain gauge locations ranged from 80.38 µm/m to 437.11 µm/m. The 2 groups of conventionally fabricated FPDs showed no significant difference in terms of strain development (P = .07). The CAD/CAM-fabricated FPDs revealed a significantly lower strain development than those made from pick-up technique impressions (P = .01). No significant difference could be detected between the FPDs manufactured from repositioning technique impressions and the CAD/CAM-generated restorations (P = .19).
Conclusion: Within the limitations of the study presented, it can be concluded that restorations fabricated on the basis of optical impressions demonstrate a level of fit which is at least as passive as that of conventional FPDs.

Keywords: CAD/CAM, implant-supported restoration, impression accuracy, passive fit