We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Int J Oral Maxillofac Implants 25 (2010), No. 1     15. Jan. 2010
Int J Oral Maxillofac Implants 25 (2010), No. 1  (15.01.2010)

Page 112-122, PubMed:20209193

Simultaneous Effects of Nicotine, Acrolein, and Acetaldehyde on Osteogenic-Induced Bone Marrow Cells Cultured on Plasma-Sprayed Titanium Implants
Pereira, Maria L. / Carvalho, João C. / Peres, Fernando / Fernandes, Maria H.
Purpose: To evaluate the potential interaction/contribution of inductive and deleterious effects of tobacco compounds on human osteoblastic cells cultured on plasma-sprayed titanium implants exposed to combinations of nicotine, acrolein, and acetaldehyde. Cell response was assessed as proliferation and function.
Materials and Methods: Titanium implants, seeded with human bone marrow-derived cells (first subculture), were cultured in osteogenic-inducing conditions for 28 days in the absence (control) and in the presence of tobacco compounds to assess (1) the dose-dependent profile of acrolein (0.01 to 0.12 mmol/L) and acetaldehyde (0.1 to 6 mmol/L) and (2) the effect of the simultaneous exposure to combinations of nicotine, acrolein, and acetaldehyde. In later experiments, seeded implants were exposed to two different concentrations of nicotine (1.2 mmol/L, known to have inductive effects on cell behavior, and 2.4 mmol/L, reported to elicit deleterious effects on cell behavior) with acrolein, acetaldehyde, or both, at a concentration that inhibits 50% (IC50).
Results: Acrolein and acetaldehyde caused dose-dependent inhibitory effects at levels similar to and greater than 0.03 and 0.1 mmol/L, respectively; IC50 regarding cell viability/proliferation and alkaline phosphatase was 0.06 mmol/L for acrolein and 0.3 mmol/L for acetaldehyde. Matrix mineralization was prevented at levels higher than 0.03 mmol/L acrolein and 0.1 mmol/L acetaldehyde. Exposure to a combination of nicotine 1.2 mmol/L with acrolein (0.06 mmol/L), acetaldehyde (0.3 mmol/L), or both resulted in a cell behavior intermediate to that observed in nicotine-treated cultures (induced cell response) and aldehyde- treated cultures (deleterious cell response). On the other hand, exposure to nicotine 2.4 mmol/L with acrolein (0.06 mmol/L), acetaldehyde (0.3 mmol/L), or both caused cumulative cytotoxic responses.
Conclusion: Results suggest that interactions of tobacco compounds on osteoblasts might contribute to the overall effects of tobacco use on implant osseointegration and long-time survival.

Keywords: acetaldehyde, acrolein, human osteoblastic cells, nicotine, plasma-sprayed titanium implants, proliferation and differentiation