We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Int J Oral Maxillofac Implants 26 (2011), No. 6     15. Dec. 2011
Int J Oral Maxillofac Implants 26 (2011), No. 6  (15.12.2011)

Page 1288-1295, PubMed:22167435

Bone Adaptation Induced by Non-Passively Fitting Implant Superstructures: A Finite Element Analysis Based on In Vivo Strain Measurements
Winter, Werner / Taylor, Thomas D. / Karl, Matthias
Purpose: Stress caused by a non-passively fitting implant superstructure may induce bone adaptation, thereby changing the magnitude of static implant loading.
Materials and Methods: In a previous investigation, repeated in vivo strain measurements were conducted on an implant-supported bar to evaluate changes in the magnitude of misfit resulting from bone remodeling processes. Both maximum (445 µm/m) and minimum (383 µm/m) strain values were simulated using a three-dimensional finite element model. The horizontal misfit needed to simulate experimentally determined strain values and the resulting stresses occurring in the restoration and the bone were quantified as von Mises equivalent stress. Additionally, different stages of osseointegration were modeled by altering the elastic modulus of bone immediately surrounding the implants.
Results: To simulate the maximum strain value, a horizontal misfit of 83.3 µm had to be introduced, whereas the minimum strain value could be simulated via a horizontal misfit of 71.5 µm. Maximum misfit caused stress magnitudes of 105 MPa in cortical bone and 5.3 MPa in trabecular bone. Minimum misfit caused stress magnitudes of 90 MPa in cortical bone and 4.6 MPa in trabecular bone. The difference between maximum and minimum horizontal misfit was 12 µm and led to a reduction in maximum stress levels of 15 MPa in cortical bone and 0.7 MPa in trabecular bone. Progressing osseointegration affected the stress situation of the supporting implants.
Conclusions: Within the limitations of this investigation, it can be concluded that bone adaptation may lead to implant site displacement in the range of several micrometers. Early fixation of non-passively fitting superstructures on implants may lead to greater passivity of fit.

Keywords: bone remodeling, finite element analysis, loading protocol, passive fit, static implant loading, strain gauge