We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 27 (2012), No. 5     15. Sep. 2012
Int J Oral Maxillofac Implants 27 (2012), No. 5  (15.09.2012)

Page 1096-1105, PubMed:23057022


The Effect of Globin Scaffold on Osteoblast Adhesion and Phenotype Expression In Vitro
Hamdan, Ahmad A. / Loty, Sabine / Isaac, Juliane / Tayot, Jean-Louis / Bouchard, Philippe / Khraisat, Ameen / Bedral, Ariane / Sautier, Jean-Michel
Purpose: Different synthetic and natural biomaterials have been used in bone tissue regeneration. However, several limitations are associated with the use of synthetic as well as allogenous or xenogenous natural materials. This study evaluated, in an in vitro model, the behavior of rat osteoblastic cells cultured on a human globin scaffold.
Materials and Methods: Rat osteoblastic cells were isolated from the calvaria of 21-day-old fetal Sprague-Dawley rats. They were then grown in the presence of globin. Real-time polymerase chain reaction (RT-PCR) was performed to study the expression of cyclin D1, integrin ß1, Msx2, Dlx5, Runx2, and osteocalcin on days 1, 5, and 9. Moreover, alkaline phosphatase activity was measured on days 1, 3, 5, and 7. Alizarin red staining was performed on day 9 to observe calcium deposition.
Results: Cells were able to adhere, proliferate, and differentiate on globin scaffolds. Moreover, RT-PCR showed that globin may stimulate some key genes of osteoblastic differentiation (Runx2, osteocalcin, Dlx5). Globin had an inhibitory effect on alkaline phosphatase activity. Calcium deposits were seen after 9 days of culture.
Conclusions: These results indicate that purified human globin might be a suitable scaffold for bone tissue regeneration.

Keywords: bone regeneration, differentiation, globin, in vitro model, osteoblasts