We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants



Forgotten password?


Int J Oral Maxillofac Implants 28 (2013), No. 2     15. Mar. 2013
Int J Oral Maxillofac Implants 28 (2013), No. 2  (15.03.2013)

Page 424-430, doi:10.11607/jomi.2751, PubMed:23527344

Bone Formation and Remodeling of Three Different Dental Implant Surfaces with Escherichia Coli-Derived Recombinant Human Bone Morphogenetic Protein 2 in a Rabbit Model
Lee, Jae-Kwan / Cho, Lee-Ra / Um, Heung-Sik / Chang, Beom-Seok / Cho, Kyoo-Sung
Purpose: The objective of this study was to analyze orthotropic bone formation and remodeling of three different dental implant surfaces with and without recombinant human bone morphogenetic protein 2 derived from Escherichia coli (ErhBMP-2) in a rabbit model.
Materials and Methods: Resorbable blasting media (RBM); sandblasted, large-grit, acid-etched (SLA); and magnesium-incorporated oxidized (MgO) implant surfaces were coated with ErhBMP-2 (1.5 mg/mL). The implants were placed into the proximal tibia in six New Zealand White rabbits. Each rabbit received six different implants (three coated with ErhBMP-2 in one tibia and three uncoated implants in the other tibia), and the sites were closed, submerging the implants. The animals received alizarin (at 2 weeks), calcein (at 4 weeks), and tetracycline (at 6 weeks) fluorescent bone markers, and were euthanized at 8 weeks for histomorphometric analysis.
Results: The amount of ErhBMP-2 coating was 9.6 ± 0.4 µg per MgO implant, 14.5 ± 0.6 µg per RBM implant, and 29.9 ± 3.8 µg per SLA implant. Clinical healing was uneventful. Mean bone-to-implant contact (± standard deviation) for the ErhBMP-2/RBM (35.4% ± 5.1%) and ErhBMP-2/MgO (33.4 % ± 13.2%) implants was significantly greater compared with RBM (23.6% ± 6.2%) and MgO (24.9% ± 2.7%) implants (P < .05). Considering the mean bone-to-implant contact in cortical bone, ErhBMP-2/SLA implants (32.9% ± 7.8%) showed lower bone-to-implant contact in cortical bone than all other implant variations (range, 39.9% ± 18.1% to 51.3% ± 9.2%; P < .05). There were no remarkable differences in new bone area, with minor differences between implants.
Conclusions: Within the limits of study, it was found that the absorbed ErhBMP-2 dose varied with implant surface characteristics, influencing local bone formation and remodeling.