We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 28 (2013), No. 6     20. Dec. 2013
Int J Oral Maxillofac Implants 28 (2013), No. 6  (20.12.2013)

Online Article, Page 386-392, doi:10.11607/jomi.te19, PubMed:24278940


Online Article: Effects of the Permeability of Shields with Autologous Bone Grafts on Bone Augmentation
Ikeno, Masayuki / Hibi, Hideharu / Kinoshita, Kazuhiko / Hattori, Hisashi / Ueda, Minoru
Purpose: The objective of this study was to histologically evaluate and compare the effects of the permeability of shields on bone augmentation in a rabbit calvarial model.
Materials and Methods: Twelve adult male Japanese white rabbits were used for the study. Each received four titanium cylinders, which were placed into perforated slits made in the outer cortical bone of the calvaria and filled with autologous iliac bone. The tops of the cylinders were randomly covered with the following test materials: (1) uncovered (control), (2) a titanium mesh, (3) an expanded polytetrafluoroethylene (e-PTFE) membrane, or (4) a titanium plate. After 8 weeks, the animals were sacrificed, and ground sections were obtained for histomorphometric analysis.
Results: There was no significant difference in augmented bone volume among all groups. However, the distribution of augmented bone in the cylinders differed among the groups. In the uncovered control, there was significantly less augmented bone in the upper third of the cylinder than in the middle or lower thirds. Findings were similar for the titanium mesh group and the e-PTFE membrane group, with significantly less augmented bone in the upper third than in the middle or lower thirds. In the titanium plate group, there was no significant difference in augmented bone among the upper, middle, and lower thirds. The differences among the upper, middle, and lower thirds of the cylinder were smaller in the order of titanium plate, e-PTFE membrane, titanium mesh, and uncovered control.
Conclusion: The use of low-permeability shields resulted in small differences in the distribution of bone structure in the present bone augmentation model.