We are using cookies to implement functions like login, shopping cart or language selection for this website. Furthermore we use Google Analytics to create anonymized statistical reports of the usage which creates Cookies too. You will find more information in our privacy policy.
OK, I agree I do not want Google Analytics-Cookies
The International Journal of Oral & Maxillofacial Implants
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Int J Oral Maxillofac Implants 32 (2017), No. 2     17. Mar. 2017
Int J Oral Maxillofac Implants 32 (2017), No. 2  (17.03.2017)

Page 251-258, doi:10.11607/jomi.4962, PubMed:28231344


Evaluation of Stress Distribution on Implant-Retained Auricular Prostheses: The Finite Element Method
Abbas, Ahmed A. / Santiwong, Peerapong / Wonglamsam, Amornrat / Srithavaj, Theerathavaj / Chanthasopeephan, Teeranoot
Purpose: The purpose of this study was to evaluate stress distribution around two craniofacial implants in an auricular prosthesis according to the removal forces. Three attachment combinations were used to evaluate the stress distribution under removal forces of 45 and 90 degrees.
Materials and Methods: Three attachment designs were examined: (1) a Hader bar with three clips; (2) a Hader bar with one clip and two extracoronal resilient attachments (ERAs); and (3) a Hader bar with one clip and two Locators. The removal force was determined by means of an Instron universal testing machine with a crosshead speed of 10 mm/ minute. All three designs were created in three dimensions using SolidWorks. The applied removal force and the models were then introduced to finite element software to analyze the stress distribution.
Results: The angle of removal force greatly affected the magnitude and direction of stress distribution on the implants. The magnitude of stress under the 45-degree removal force was higher than the stress at 90 degrees. The combination of the 1,000-g retention clip and 2,268-g retention Locator exhibited the highest stress on the implant flange when the removal force was applied at 45 degrees.
Conclusion: The removal angle greatly influences the amount of force and stress on the implants. Prosthodontists are encouraged to inform patients to remove the prosthesis at 90 degrees and, if possible, use a low-retentive attachment to reduce stress.

Keywords: finite element method, implant-retained auricular prostheses, removal force, stress